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A time stable discretization is derived for the second-order wave equation with discontin-
uous coefficients. The discontinuity corresponds to inhomogeneity in the underlying med-
ium and is treated by splitting the domain. Each (homogeneous) sub domain is discretized
using narrow-diagonal summation by parts operators and, then, patched to its neighbors
by using a penalty method, leading to fully explicit time integration. This discretization
yields a time stable and efficient scheme. The analysis is verified by numerical simulations
in one-dimension using high-order finite difference discretizations, and in three-dimen-
sions using an unstructured finite volume discretization.
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1. Introduction

In many applications, such as general relativity [33,3], seismology [15,36], oceanography [27], acoustics [35,30,7,1,8] and
electromagnetics [37,9], the underlying equations are systems of second-order hyperbolic partial differential equations.
However, as pointed out in [18], with very few exceptions the equations are rewritten and solved as a system of first-order
equations. There are three obvious drawbacks with this approach: (1) the number of unknowns is doubled, (2) spurious
oscillations due to unresolved features might be introduced, and (3) double resolution (both in time and in each of the spatial
dimensions) is required to obtain the same accuracy. The reasons for solving the equations on first-order form are most likely
related to the maturity of CFD, that has evolved during the last 40 years. Many of the stability issues for first-order hyperbolic
problems have already been addressed.

For wave-propagation problems, the computational domain is often large compared to the wavelengths, which means
that waves have to travel long distances (or correspondingly long times). It can be shown that high-order accurate time
marching methods, as well as high-order spatially accurate schemes (at least third-order) are more efficient [21] for prob-
lems on smooth domains. Such schemes, although they might be G–K–S stable [10] (convergence to the true solution as
Dx! 0), may exhibit a non-physical growth in time [4], for realistic mesh sizes. It is therefore important to devise schemes
that do not allow a growth in time that is not called for by the differential equation. Such schemes are called strictly (or time)
stable.

High-order accurate finite difference methods (HOFDM) are widely used for hyperbolic problems written on first-order
form. For problems with discontinuous coefficients, the formal order of accuracy reduces to first-order [11,12,2] with no spe-
cial treatment of the discontinuity. In this paper we will focus the attention to second-order formulations of the acoustic
. All rights reserved.
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wave equation in discontinuous media. One of the main motivations with this paper is to present a method that will recover
high-order accuracy in the presence of discontinuous coefficients.

Traditionally, there have been essentially two approaches of handling the discontinuity, sometimes referred to as the het-
erogeneous and the homogeneous formulations [15]. In the heterogeneous approach [35,30,7], the discontinuity (here de-
noted discontinuous interface) is treated by taking an average ‘‘smoothing” of the spatially varying coefficients to recover
stability. The benefit with this technique is that irregular shaped discontinuous interfaces are handled with no special treat-
ment. However, the formal order of accuracy reduces to first-order.

The second approach to handle the discontinuity is to employ a domain decomposition technique and solve for the inter-
face (jump) conditions. There are different techniques of imposing the interface conditions. In [1] a second-order FD method
is introduced where the solution is based on the introduction of auxiliary Lagrange multipliers. A drawback with this tech-
nique is that a huge system of linear equations has to be solved at each time-step. It is unclear if this technique can be ex-
tended to handle irregular shaped discontinuous interfaces, and how to obtain higher-order accuracy. A strictly stable
HODFM for the wave equations in discontinuous media was constructed in [24] by combining second-derivative summa-
tion-by-parts (SBP) operators (constructed in [23]) with the projection method [28,29] to impose the boundary and the dis-
continuous interface (jump) conditions. The drawback with this approach is that it cannot easily be extended to handle
variable coefficients (except pice-wise constant coefficients), complex geometries and irregular shaped discontinuous inter-
faces. In [18,19,17,16] a second-order accurate FD method for the acoustic wave equation on second-order form is con-
structed, where the discontinuity and complex geometry are handled by embedding the domain into a Cartesian grid,
making use of ghost-points and Lagrange interpolation to impose the boundary and interface conditions. It is unclear if
the embedded boundary method can be extended to higher-order accuracy. Another good candidate is the discontinuous
Galerkin (DG) method, which combines both unstructured capability and higher-order accuracy (also in discontinuous med-
ia). DG have been implemented successfully in 2-D for both the acoustic wave equation [8] and Maxwell’s equations [9] on
second-order form. However, the efficiency of DG applied to systems of second-order hyperbolic equations on large 3-D
applications is an open question.

In this paper we focus on: (1) deriving strictly stable HOFDM for the acoustic wave equation in discontinuous media, by
combining second-derivative SBP operators and the simultaneous approximation term (SAT) method [5], and (2) introducing
the technique in complex geometries by making use of the discrete Laplacian operator used in CDP1 (an unstructured finite
volume flow solver developed as part of Stanford’s DOE-funded ASC Alliance program to perform LES in complex geometries).
This approach is somewhat related to the DG method since they both make use of the penalty technique to handle the discon-
tinuity in a truly non-overlap fashion.

The three reasons for introducing the SAT method instead of the recently developed projection method [24] to impose the
discontinuous interface conditions are the following: (1) it is easier to implement (although, a detailed study is omitted
here), (2) it is not limited to piecewise constant coefficients (see [24]), and (3) it is much more accurate (as will be shown
in Section 4).

The two main reasons for introducing computational tools from CDP are the following: (1) it allows us to handle huge
problems in complex geometries, and (2) it makes it easier to isolate and verify the accuracy and stability properties of
the Laplacian operator used in CDP. (In spite of it’s simplicity the second-order wave equation imposes a stricter stability
requirement [24] on the discrete Laplacian operator than when used for parabolic problems like the Navier–Stokes
equations).

In Section 2 we introduce some definitions and discuss the SBP property for the 1-D case, and show how to impose the
boundary and interface conditions in discontinuous media using SAT. In Section 3 we will show how to implement this tech-
nique in complex geometries using the unstructured finite volume method. In Section 4 we will verify the accuracy and sta-
bility properties, by performing numerical computations in 1-D and 3-D. A direct comparison between the SAT method and
the Projection method will be done for the 1-D case. In Section 5 we present our conclusions.

In this article, we only consider acoustic waves. The extension to handle for example elastic waves [15,2,36] with an anal-
ogous approach will be dealt with in a forthcoming paper.
2. The finite difference method

For clarity we will restrict the analysis to 1-D in this section. The extension to 2-D and 3-D (see for example [24,26,25]) is
straightforward using 1-D SBP finite-difference operators.

We begin with a short description and some definitions (for more details, see [20,31,23]). Let the inner product for real-
valued functions u; v 2 L2½�1;1� be defined by ðu; vÞ ¼

R 1
�1 u v w dx, wðxÞ > 0, and let the corresponding norm be

kuk2
w ¼ ðu;uÞ. The domain (�1 6 x 6 1) is discretized using 2N + 1 equidistant grid points
1 CDP
xi ¼ i h; i ¼ 0;1 . . . ;2N; h ¼ 2
N
:

is named after Charles David Pierce (1969–2002).



K. Mattsson et al. / Journal of Computational Physics 227 (2008) 8753–8767 8755
The approximative solution at grid point xi is denoted vi, and the discrete solution vector is vT ¼ ½v0; v1; . . . ; v2N�. Similarly, we
define an inner product for discrete real-valued vector functions u; v 2 R2Nþ1 by ðu; vÞH ¼ uT H v, where H ¼ HT > 0, with
the corresponding norm kvk2

H ¼ vT H v. The following vectors will be frequently used:
e0 ¼ ½1;0; . . . ;0�T; eN ¼ ½0; . . . ;0;1�T: ð1Þ
2.1. Narrow-diagonal SBP operators

To introduce narrow-diagonal SBP operators, we present the following definition:

Definition 2.1. An explicit pth-order accurate finite difference scheme with minimal stencil width of a Cauchy problem, is
called a pth-order accurate narrow stencil.

Remark. We say that a scheme is explicit if no linear system of equations need to be solved to compute the difference
approximation. Spatial Padé discretizations [22] are often referred to as ‘‘compact schemes”. The approximation of the deriv-
ative is obtained by solving a tri- or penta-diagonal system of linear equations at every time-step. Hence, if written in explicit
form, Padé discretizations lead to full-difference stencils, similar to spectral discretizations.

Consider the 1-D wave equation
autt ¼ ðbuxÞx x 2 ½�1; 1�; ð2Þ
where aðxÞ; bðxÞ > 0. Multiplying Eq. (2) by ut and integrating by parts (referred to as ‘‘the energy method”) lead to
d
dt

E ¼ 2butuxj1�1; ð3Þ
where the continuous energy is defined as
E ¼ ðkutk2
a þ kuxk2

bÞ: ð4Þ
Definition 2.2. Let DðbÞ2 ¼ H�1ð�Mb þ BSÞ approximate o=oxðbo=o xÞ, where bðxÞ > 0 is a smooth function, using a pth-order
accurate narrow stencil. DðbÞ2 is said to be a pth-order accurate narrow-diagonal second-derivative SBP operator, if H is
diagonal and positive definite, Mb is symmetric and positive semi-definite, S approximates the first-derivative operator at the
boundaries and B ¼ diagð�b0;0 . . . ;0; bNÞ.

A second-order accurate narrow-diagonal second-derivative SBP operator DðbÞ2 is presented in Appendix I. (High-order
accurate narrow-diagonal second-derivative SBP operators for constant coefficients bðxÞ ¼ 1, denoted D2, were constructed
in [23]. For completeness we present the second-, fourth-, and sixth-order accurate operators in Appendix I, since they are
used in Section 4.) An example of its use is the semi-discretization Avtt ¼ DðbÞ2 v of (2), where A is the projection of a onto the
diagonal. Multiplying by vT

t H from the left and adding the transpose lead to
d
dt

EH ¼ 2ðvtÞ0ðBSvÞ0 þ 2ðvtÞNðBSvÞ2N ; ð5Þ
where the semi-discrete energy is defined as
EH ¼ ðkvtk2
HA þ vTMbvÞ: ð6Þ
Estimate (5) is a discrete analog of Eq. (3).

Remark. The discrete energy (6) mimics Eq. (4) iff: (1) H is diagonal and positive definite, and (2) if Mb is positive-definite
and the interior stencil is a narrow approximation of �ho=oxðbo=oxÞ. The first condition guarantees that the matrix product
HA is a norm (i.e., symmetric and positive definite). The second condition guarantees that vTMbv P 0 with equality iff v is a
constant (such that the quadratic form exactly mimics kuxkb). If Mb is not narrow vTMbv is zero also for v equal to the highest
frequency mode that can exist on the grid (sometimes referred to as spurious oscillations), which means that stability is not
guaranteed.

The following lemma is central to the present study:

Lemma 2.3. The dissipative part Mb of a narrow-diagonal second-derivative SBP operator has the following property:
vTMbv ¼ h
a
b0
ðBSvÞ20 þ h

a
bN
ðBSvÞ2N þ vT fMb v; ð7Þ
where fMb is symmetric and positive semi-definite, and a a positive constant, independent of h.



Table 1
a in Eq. (7) for the second-, fourth- and sixth-order accurate narrow-diagonal second-derivative SBP operators

Second-order Fourth-order Sixth-order

1 0.2508560249 0.1878715026

8756 K. Mattsson et al. / Journal of Computational Physics 227 (2008) 8753–8767
Proof. See Appendix I. h

This was indicated in [6] but never derived explicitly. For the special but important case of constant coefficients (b ¼ 1)
we have derived numerically the values of a for the second-, fourth- and sixth-order accurate finite difference SBP discret-
izations (see Appendix I) by using the symbolic mathematics software Maple. The results are presented in Table 1.

Remark. The boundary closure for a pth-order accurate narrow-diagonal SBP operator is of order p=2 (see [23]). This means
that the boundary closure for ðD1Þ2 is of order p=2� 1. Hence, for second-order hyperbolic systems the convergence for wide-
stencil approximations (i.e., by replacing D2 with ðD1Þ2) drops to ðp=2þ 1Þth-order, while the narrow-stencil formulations
are ðp=2þ 2Þth-order accurate (see [32] for more information on the accuracy of finite difference approximations).
2.2. Media interface in 1-D

We start by deriving the interface conditions for the continuous problem (2), where the coefficients aðxÞ; bðxÞ > 0 are dis-
continuous at x ¼ 0. Integration by parts leads to
Z 1

�1
auttut dx ¼ lim

�!0

Z ��

�1
ðb uxÞxut dx�

Z �

1
ðb uxÞxut dx

� �
¼ lim

�!0
b uxut j1�1 � b uxutj��� �

Z ��

�1
b uxuxt dxþ

Z �

1
b uxuxt dx

� �
:

To obtain an energy estimate requires that ut and bux are continuous across the interface, i.e., lim�!0ðb uxut j���Þ ¼ 0, leading to
Eq. (3). We consider the following problem:
a1uð1Þtt ¼ ðb1uð1Þx Þx; �1 6 x 6 0

a2uð2Þtt ¼ ðb2uð2Þx Þx; 0 6 x 6 1;
ð8Þ
where a1 6¼ a2, b1 6¼ b2. Here uð1; 2Þ denote the solutions corresponding to the left and right domains respectively. Continuity
at the interface (x ¼ 0) means that the following interface (jump) conditions:
uð1Þt ¼ uð2Þt ; b1uð1Þx ¼ b2uð2Þx ð9Þ

have to be imposed. (The first interface condition in Eq. (9) holds if we impose uð1Þ ¼ uð2Þ at the interface. This will have impli-
cations when we turn to the numerical treatment, in particular the time-discretization, see the remark at the end of this sec-
tion.) At the far-field boundaries we apply Neumann boundary conditions
� b1ð�1Þuð1Þx ð�1; tÞ ¼ g�1ðtÞ
b2ð1Þuð2Þx ð1; tÞ ¼ g1ðtÞ:

ð10Þ
Remark. Other type of boundary conditions, like Dirichlet and radiation boundary conditions (see for example [34,13]) can

also be used. However, the main focus in this paper is on the interface treatment.

To simplify the coming energy-estimates we will always assume homogeneous boundary data. (The analysis holds for
inhomogeneous data, but introduces unnecessary notation.)

The energy method applied to Eq. (8) with the interface conditions (9) and the homogeneous Neumann boundary condi-
tions (10) leads to
d
dt

Eð2Þ ¼ 0; ð11Þ
where the energy is defined as
Eð2Þ ¼ kutk2
a1
þ kvtk2

a2
þ kuxk2

b1
þ kvxk2

b2
: ð12Þ
We introduce Eð2Þ to denote the fact that Eq. (8) consists of two sub domains.
The semi-discrete approximation of (9) can be written
I1 � vð1ÞN � vð2Þ0 ¼ 0 I2 � ðvð1Þt ÞN � ðv
ð2Þ
t Þ0 ¼ 0

I3 � ðB1Svð1ÞÞN þ ðB2Svð2ÞÞ0 ¼ 0;
ð13Þ
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where all conditions (also vð1ÞN ¼ vð2Þ0 ) are written out. Here vð1;2Þ are the solution vectors corresponding to the left and right
domains respectively. The left and right domains are discretized using (N þ 1) grid points.

A semi-discretization of (10) is given by
LT
1vð1Þ ¼ ðBSvð1ÞÞð1ÞN ¼ g�1; LT

2vð2Þ ¼ ðBSvð2ÞÞ0 ¼ g1: ð14Þ
The reason why we write out g1;�1 (although we will set g1;�1 ¼ 0 in the coming energy estimate) is to emphasize the nature
of SAT (as a penalty forcing function) and to show the more general case of time-dependent data. A semi-discretization of Eq.
(8) using narrow-diagonal SBP operators and the SAT method to impose the semi-discrete interface conditions (13) and
boundary conditions (14), can be written:
A1vð1Þtt ¼ Dðb1Þ
2 vð1Þ

þsH�1eNðI1Þ
þbðBSÞTeNH�1ðI1Þ
þcH�1eNðI3Þ
þrH�1eNðI2Þ
�H�1e0ðLT

1vð1Þ � g�1Þ

A2vtt ¼ Dðb2Þ
2 vð2Þ

�sH�1e0ðI1Þ
�bðBSÞTe0H�1ðI1Þ
�cH�1e0ðI3Þ
�rH�1e0ðI2Þ
þH�1eNðLT

2vð2Þ � g1Þ:

ð15Þ
The first main result of this paper is stated in the following Lemma:

Lemma 2.4. The scheme (15) with homogeneous data is stable if Dðb1;2Þ
2 are narrow-diagonal SBP operators, r 6 0, c ¼ � 1

2, b ¼ 1
2

and s 6 � b1þb2
4ha hold.

Proof. Let g�1 ¼ g1 ¼ 0, and c ¼ 1
2, b ¼ � 1

2. Multiplying Eq. (15) by ðvð1ÞÞTt H and ðvð2Þt Þ
TH, respectively, and adding the trans-

pose lead to
d
dt

Eð2ÞH ¼ 2 wT
t Dwt þ

d
dt

xTRx;
where the right hand side corresponds to the interface coupling terms given by
w ¼
vð1ÞN

vð2Þ0

" #
; D ¼ r

1 �1
�1 1

� �
;

and
x ¼

vð1ÞN

vð2Þ0

ðBSvð1ÞÞN
ðBSvð2ÞÞ0

266664
377775; R ¼

�s s � 1
2

1
2

s �s � 1
2

1
2

� 1
2 � 1

2 � a
b1

0
1
2

1
2 0 � a

b2

266664
377775:
Here we have used Lemma 2.3 and the fact that Dðb1 ;b2Þ
2 are narrow-diagonal SBP operators. The discrete energy is given by
Eð2ÞH ¼ kv
ð1Þ
t k

2
HA1
þ kvð2Þt k

2
HA2
þ ðvð1ÞÞTMb1

vð1Þ þ ðvð2ÞÞTMb2
vð2Þ:
Stability follows if D and R are negative semi-definite, which lead to the following conditions:
r 6 0 ; s 6 � b1 þ b2

4ha
;

where b1;2 denote the local values of b1;2 at the interface. h

Remark. By choosing r ¼ 0 in (15) a compact (only two time-levels have to be stored) and explicit high-order accurate
time-discretization can be used (see [24] for details). This is the choice in the computations. If r < 0 damping of the energy
is introduced, which can potentially lead to a more robust and less reflective interface treatment. For this case the standard
fourth-order accurate Runge–Kutta method can be used to time-advance the solution. We have not included a numerical
study for the case where r < 0 in this paper.

We introduce the penalty-strength parameter C through
s ¼ �C
b1 þ b2

4ha
:

Hence a value of C < 1, according to Lemma 2.4, will not result in an energy estimate and might lead to an unstable scheme.
A higher value of C leads to a more tight interface coupling. This can potentially lead to a more accurate coupling, but will
also introduce stiffness. This is verified numerically in Section 4.
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3. The finite volume method

This section describes the details of the discrete Laplacian finite volume operator used to develop the internal discretiza-
tion and boundary conditions in CDP. The operator is developed for a node-based discretization on general polyhedral
meshes, where both grid coordinates and the unknowns are collocated at nodes. Fig. 1 provides some geometrical details
used for operator construction. The discretization of the Laplacian operator is particularly challenging for unstructured finite
volume methods because it is difficult to simultaneously achieve accuracy and stability on general unstructured grids. Con-
sider the 3-D wave equation
Fig. 1.
midpoi
surroun
autt ¼ b Du; ð16Þ

where b; aðx; y; zÞ > 0. To simplify notation in this section we assume that b is constant (compare with Eq. (2) in 1-D),
although CDP can handle variable coefficients.

To introduce the narrow-diagonal Laplacian operator (compare with Definition 2.2 in the 1-D case.), we present the fol-
lowing two definitions:

Definition 3.1. Let S ¼
P

i2F 0b
Si;b, where F 0b is the set of all boundary sub-faces. Si;b is an outward sub-face normal derivative

operator associated with each of the boundary nodes. We say that S approximates the outward normal derivative operator at
the boundary.

Definition 3.2. Let DL ¼ V�1ð�Lþ SÞ approximate the Laplacian operator. DL is said to be a narrow-diagonal Laplacian SBP
operator, if V is diagonal and positive definite, L is narrow, symmetric and positive semi-definite, and S as defined in Defi-
nition 3.1.

A semi-discretization of (16), using a narrow-diagonal Laplacian SBP operator, will have the following matrix form:
VAvtt ¼ bð�Lþ SÞv: ð17Þ

We will now describe the construction of the narrow-diagonal Laplacian SBP operator on an unstructured 3-D mesh. In Sec-
tion 4 we will use this operator to simulate wave-propagation in complex discontinuous media in 3-D.

3.1. Narrow-diagonal Laplacian SBP operator

The node-based volumes required for integrating the time derivative and any source terms are computed by tessellating
each cell into ‘‘sub-tets”, each defined by a node, an edge, a face, and a cell as shown in Fig. 1. The volume of the sub-tet is
then added to the volume associated with node P. In the current version of CDP, the volume or mass matrix is thus diagonal
(lumped-mass approximation). Row P of the volume integration operator V has a single diagonal entry equal to the sum of its
associated sub-tet volumes Vt0 :
VP / �
Z

P
/ dV ¼

X
t02T 0P

Vt0/P ;
where / is a scalar function, t0 represents a sub-tet, and T 0P the set of all sub-tets associated with node P.
Geometrical details for 3-D node-based meshes. Unknowns are stored at nodes (e.g., P and edge-based neighbor nb). Edge centers are located at the
nt between nodes, face centers are located at the simple average of their surrounding nodes, and cell centers are defined by the simple average of their
ding nodes. Ne0 is a sub-edge normal, associated with an internal or boundary edge. Nf 0 is a sub-face normal associated with boundary faces only.
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To further simplify the construction of these volumes and the operators in general, we choose the simple average of
surrounding nodes to define face and cell centers. Unlike cell-centered control volume (CV) based formulations, where
face and cell centers are defined at the centroids or centers of mass, the same definition for the node-based formulation
has no obvious benefit. The choice of simple average for center locations ensures that interpolations based on simple
averages of nodal data will be limited and linearly exact. For meshes built from simplex elements (pris/tets), the simple
average is of course equivalent to the center of mass. In [14], we reported the results of a one-to-one comparison of the
node-based and the CV-based formulations using the inviscid Taylor vortex problem on a variety of grids, and concluded
that, with few exceptions, the nodal discretization was significantly more accurate, displaying consistent second-order
rates of error reduction.

In CDP, the volume-integrated Laplacian operator is constructed using the divergence theorem and the sub-edge concept
presented in Fig. 1. For row P of the narrow-diagonal Laplacian SBP operator
ð�LP þ SPÞ / �
Z

P

o2/
oxioxi

dV ¼
I

P

o/
oxi

n̂i dA ¼
X
e02E0P

o/
oxi

����
e0

n̂i;e0Ae0 þ
X
f 02F 0P

o/
oxi

����
f 0

n̂i;f 0Af 0 ¼
X
e02E0P

Se0/þ
X
f 02F0P

Sf 0/;
where e0 represents a sub-edge, E0P the set of all sub-edges associated with node P, f 0 represents a boundary sub-face, and F 0P
the set of all boundary sub-faces associated with node P. n̂e0 is the sub-edge outward unit normal (outward with respect to P),
Ae0 the sub-edge area, Se0 and Sf 0 are the sub-edge and sub-face normal-derivative-times-area operators, respectively. The re-
quired gradient for each sub-edge is determined by solving the following 3� 3 system for the unknown gradient
components:
o/
oxi

����
e0
ðxi;nb � xi;PÞ ¼ /nb � /P

o/
oxi

����
e0

1
Nnof

X
xi;nof �

1
2
ðxi;nb þ xi;PÞ

� �
¼ 1

Nnof

X
/nof �

1
2
ð/nb þ /PÞ

o/
oxi

����
e0

1
Nnoc

X
xi;noc �

1
2
ðxi;nb þ xi;PÞ

� �
¼ 1

Nnoc

X
/noc �

1
2
ð/nb þ /PÞ;
where P and nb represent the two nodes associated with the edge of this sub-edge, nof the Nnof nodes of the face associated
with the sub-edge (these will of course include P and nb) and noc the Nnoc nodes of the cell associated with this sub-edge
(these will also include P and nb).

It is important to note that the sub-edges are not combined into a single edge normal and edge area prior to dotting with
an edge-based gradient. This combination of normals to a single edge normal may simplify the construction of the operator,
but it is not done in CDP. As such, in addition to being compact and linearly exact (which, for a Laplacian, means returning
zero in a linear field), the resulting operator has two important properties:

� In the limit of Cartesian structured meshes, the standard narrow-diagonal second-order finite difference Laplacian is
recovered (involving only node P and the six neighbors that share an edge with P).

� For the case of simplex elements, the standard FEM Laplacian using linear basis functions is recovered.

The first of these properties is well known, and would have resulted even if we had combined the sub-edge normals into a
single edge. The equivalence with linear FEM on simplex grids and resulting symmetry, however, is less well known and re-
quires this sub-edge construction.

The boundary part of the Laplacian operator is a summation over sub-faces, and will be non-zero at boundary nodes only.
The three required components of the gradient at each sub-face are determined by solving a similar 3� 3 system, involving
the two equations:
o/
oxi

����
f 0
ðxi;nb � xi;PÞ ¼ /nb � /P

o/
oxi

����
f 0

1
Nnof

X
xi;nof � xi;P

� �
¼ 1

Nnof

X
/nof � /P
and one of
o/
oxi

����
f 0
ðxi;I � xi;PÞ ¼ /I � /P

o/
oxi

����
f 0

1
Nnoc

X
xi;noc � xi;P

� �
¼ 1

Nnoc

X
/noc � /P ;
with the first of these being preferred. Nodes P and nb are on the edge associated with the boundary sub-face, nof are the Nnof

nodes of the face associated with the sub-face, I (for Internal) is/are the node(s) along the edge(s) of P not part of the bound-
ary face, but still part of the internal cell that contains the boundary face, and noc are the Nnoc nodes associated with the
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internal cell that contains the boundary face. For clarity, node I is labeled in Fig. 1. Although the last equation is never used
for grids composed of convex unstructured primitives (tet, pyramid, prism, hex), it is included here because on certain non-
convex or polyhedral meshes (e.g., meshes with hanging nodes on boundary faces), the edges associated with node I can be
coplanar with the boundary face.

While there are no restrictions on the complexity of Sf 0 with regard to stability, here we have made the practical decision to
define it in a way that simplifies the parallel implementation. In CDP the domain is decomposed such that the cells (elements)
are uniquely divided among the processors. However, nodes, edges, and faces that lie on inter-processor boundaries are mul-
tiply defined. By expressing the Sf 0 operator as a global sum of locally available information (the cell and boundary face that
completely define the gradient are entirely present on only one processor). In addition, this local definition of Sf 0 makes it
straightforward to include only those sub-faces that participate in a particular interface or Neumann boundary condition.

Remark. Part of the stability requirement for the Laplacian SBP operator is that L is symmetric and positive semi-definite.
For both the limiting cases previously described, it is well known that this is true. On general polyhedra, however, we do not
have a proof. But an eigenvalue analysis (not shown here) using a variety of polyhedral meshes indicate that L is positive
semi-definite except for the case of extreme element deformation.

The following lemma is central to the present study:

Lemma 3.3. The dissipative part L of a narrow-diagonal Laplacian SBP operator has the following property:
vTLv ¼ a
X
i2F 0b

Vi;b

Ai;b
ðSi;bvÞ2 þ vTeLv; ð18Þ
where F 0b is the set of all boundary sub-faces and Si;b as in Definition 3.1. Ai;b is an area magnitude, and Vi;b a nodal volume asso-
ciated with each of the boundary nodes. eL is symmetric and positive semi-definite and a a positive constant.

We omit the proof, since it is similar to the proof of Lemma 2.3. Unlike the uniform structured 1-D case, it is more com-
plicated to analytically derive a single sharp value for a, that is applicable to all unstructured grids. A numerical eigenvalue
analysis indicate that a ’ 0:8 for the problems computed in this article (compare with the second-order case in 1-D Table 1).

3.2. Media interface in 3-D

The 3-D extension of Eq. (8) (with the 1-D interface conditions (9) and Neumann boundary conditions (10)) is given by
a1uð1Þtt ¼ b1 Duð1Þ; x 2 Xð1Þ

a2uð2Þtt ¼ b2

Deltauð2Þ; x 2 Xð2Þ

b1ruð1Þ � nð1Þ ¼ gð1Þ; x 2 oXð1Þ

b2ruð2Þ � nð2Þ ¼ gð2Þ; x 2 oXð2Þ

b1ruð1Þ � nð1Þ ¼ �b2ruð2Þ � nð2Þ; ruð1Þ ¼ uð2Þ; ruð1Þt ¼ uð2Þt ; x 2 oXðIÞ;

ð19Þ
wherer is the gradient operator and Xð1;2Þ 2 R3 are two adjacent domains (representing different media) joined by the inter-
face oXðIÞ. oXð1;2Þ are the boundaries of the adjacent domains, excluding oXðIÞ. nð1;2Þ are the outward pointing normals corre-
sponding to the two domains.

The semi-discrete finite volume approximation of (19) using narrow-diagonal Laplacian SBP operators and the SAT tech-
nique can be written:
VA1vð1Þtt ¼ b1ð�Lþ SÞvð1Þ

þsi;IB
ð1Þ
i;I ðvð1Þ � vð2ÞÞ

þbSTBð1Þi;I ðvð1Þ � vð2ÞÞ

þcBð1Þi;I ðb1Svð1Þ þ b2Svð2ÞÞ

þrBð1Þi;I ðv
ð1Þ
t � vð2Þt Þ

�Bð1Þi;b ðb1Svð1Þ � gð1ÞÞ

VA2vð2Þtt ¼ b2ð�Lþ SÞvð2Þ

�si;IB
ð2Þ
i;I ðvð1Þ � vð2ÞÞ

�bSTBð2Þi;I ðvð1Þ � vð2ÞÞ

�cBð2Þi;I ðb1Svð1Þ þ b2Svð2ÞÞ

�rBð2Þi;I ðv
ð1Þ
t � vð2Þt Þ

þBð2Þi;b ðb2Svð2Þ � gð2ÞÞ;

ð20Þ
where Bð1;2Þi;b and Bð1;2Þi;I picks out the outer boundary nodes (compare with Eq. (15)) and the interior interface nodes respec-
tively, in the two domains (compare with e0;N in (1)). As for the 1-D case, vð1;2Þ denote the solution vectors corresponding
to the two different domains (media).

The second main result of this paper is stated in the following Lemma:

Lemma 3.4. The scheme (20) with homogeneous data is stable if DL ¼ V�1ð�Lþ SÞ is a narrow-diagonal Laplacian SBP operator,
r 6 0, c ¼ � 1

2, b ¼ 1
2 and si;I 6 �

Ai;b
Vi;b

b1þb2
4a hold.
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We omit the proof, since it is similar to the proof of Lemma 2.4. (Note that si;I varies along the interface depending on Ai;b

and Vi;b.)

4. Computations

To test the accuracy of Eqs. (15) and (20) we chose an analytic solution
Table 2
The spe

Order

Second
Fourth
Sixth

Also co

Table 3
logðl2 �

N

51
101
201
301
401

Also co

Table 4
logðl2 �

N

51
101
201
301
401

Also co
uð1Þ ¼ cosðw1c1tÞ cosðw1xÞ; x 2 ½�1; 0�; t P 0; w1 ¼ ð2 nþ 1Þp; m;n 2 Z

uð2Þ ¼ cosðw2c2tÞ cosðw2xÞ; x 2 ½0;1�; t P 0; w2 ¼ ð2 mþ 1Þp; c2 ¼ c1
w1

w2
;

ð21Þ
where a1 ¼ b1 ¼ 1; a2 ¼ b2 ¼ 0:6, n ¼ 1 and m ¼ 2 is used. (Here we have introduce the notation ck ¼ akbk, k ¼ 1;2.)
The convergence rate is calculated as
q ¼ log10
ku� vðN1Þkh

ku� vðN2Þkh

� ��
log10

N1

N2

� �1=d

; ð22Þ
where d is the dimension (d ¼ 1 in the 1-D case), u ¼ ½uð1Þ;uð2Þ� is the analytic solution, and vðN1Þ the corresponding numerical
solution with N1 unknowns. ku� vðN1Þkh is the discrete l2 norm of the error.

Eqs. (15) and (20) with r ¼ 0 and homogeneous data can formally be written as an ODE system
vtt ¼ Qv; ð23Þ
where vT ¼ ½vð1Þ; vð2Þ�T is the discrete solution vector. In Sections 2 and 3 we have shown that the matrix Q have non-positive
and real eigenvalues (a necessary stability condition) by utilizing the energy method. A compact (only two time-levels have
to be stored) and explicit high-order accurate time-discretization is used (see [24]) for the time advancement. For a Cartesian
grid it can be shown [24] that the time-step restriction (for stability) is inversely proportional to the square root of the spec-
tral radius of Q.
ctral radius of h2Q for Eq. (15) using different strength of penalty parameter C

C ¼ 1 C ¼ 1:2 C ¼ 5 Projection

4.00 4.00 13.52 4.00
5.77 6.33 31.60 5.32

15.34 15.65 48.43 10.34

mparing to the projection method.

errorÞ and convergence for Eq. (15), second-order case, using different strength of penalty parameter C

C ¼ 1 qð1Þ C ¼ 1:2 qð1:2Þ C ¼ 5 qð5Þ Projection qðPÞ

�1.28 0.00 �1.50 0.00 �1.52 0.00 0.06 0.00
�1.47 0.64 �2.12 2.09 �2.13 2.03 �0.24 1.02
�1.62 0.51 �2.72 2.02 �2.73 2.02 �0.54 1.01
�1.71 0.50 �3.08 2.03 �3.08 2.01 �0.72 1.01
�1.77 0.50 �3.33 2.01 �3.33 2.01 �0.84 1.01

mparing to the projection method.

errorÞ and convergence for Eq. (15), fourth-order case, using different strength of penalty parameter C

C ¼ 1 qð1Þ C ¼ 1:2 qð1:2Þ C ¼ 5 qð5Þ Projection qðPÞ

�2.33 0.00 �3.22 0.00 �3.29 0.00 �1.37 0.00
�3.05 2.44 �4.48 4.22 �4.54 4.21 �2.25 2.97
�3.80 2.49 �5.75 4.24 �5.78 4.17 �3.15 3.01
�4.24 2.50 �6.48 4.16 �6.50 4.10 �3.68 3.01
�4.55 2.50 �6.99 4.11 �7.01 4.07 �4.05 3.01

mparing to the projection method.
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4.1. High-order finite difference method in 1-D

The spectral radius of h2 Q for the semi-discrete problem Eq. (15) as a function of the penalty strength C is presented in
Table 2. We compare the second-, fourth- and the sixth-order accurate cases, and include the corresponding results using the
able 5
ogðl2 � errorÞ and convergence for Eq. (15), sixth-order case, using different strength of penalty parameter C

C ¼ 1 qð1Þ C ¼ 1:2 qð1:2Þ C ¼ 5 qð5Þ Projection qðPÞ

51 �2.38 0.00 �3.83 0.00 �4.11 0.00 �2.27 0.00
01 �3.70 4.45 �5.71 6.33 �6.10 6.69 �3.76 5.01
01 �5.05 4.50 �7.68 6.59 �8.05 6.55 �5.26 5.02
01 �5.84 4.51 �8.80 6.39 �9.17 6.38 �6.14 5.02
01 �6.40 4.51 �9.62 6.61 �10.01 6.70 �6.77 5.02

lso comparing to the projection method.

able 6
ogðl2 � errorÞ and convergence using a second-order unstructured FV discretization in a discontinuous media

x logðl2Þ q

.0625 �1.11

.03125 �1.70 1.97

.015625 �2.31 2.07

.0078125 �2.92 2.04

.00390625 �3.52 2.00

Fig. 2. Geometrical details and inspiration for the three cube compounds.

Fig. 3. Plane cut through coarse grid, different views (zoom).
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projection method (see [24] for details). The stiffness increases with a larger C. The convergence results are shown in Tables
3–5 showing the improved accuracy with increased penalty strength C. A direct comparison with the projection method [24]
is also presented. The simulation is run to t ¼ 1 with a time-step small enough to make the time discretization error negli-
gible (compared to the spatial discretization error). The SAT method is much more accurate (for C > 1) than the projection
method, and leads to a higher convergence rate. The sixth-order case should in theory only lead to fifth-order convergence
(see [32] for more information on the accuracy of finite difference approximations), but yields a result closer to seventh-or-
der (see Table 5). (This is a remarkable result that needs further study since it contradicts the convergence analysis in [32].)
Fig. 4. Propagation of a 3-D Gaussian pulse on the 2� 2� 2 array of 3-cube compounds with discontinuous interface.
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The spectral radius of h2Q is slightly larger for the SAT method compared to the projection method, depending on the value
of C, see Table 2.
4.2. Finite volume method in 3-D

The present method has been implemented for unstructured tetrahedral grids in a discontinuous media, using the node-
based SBP finite-volume discretization. In the first test we verify the accuracy of Eq. (20). We chose the analytic 1-D solution
given by Eq. (21), and compute the solution on a cubic two-block domain. (As for the 1-D case we use
a1 ¼ b1 ¼ 1; a2 ¼ b2 ¼ 0:6, n ¼ 1 and m ¼ 2.) A convergence study is shown in Table 6.

Finally, as a qualitative illustration of the method’s capability, we compute the 3-D propagation of a Gaussian pulse in a
volume surrounding a 2� 2� 2 array of 3-cube compounds (see Fig. 2) made of a different material. We use a1 ¼ b1 ¼ 1 on
the outside domain and a2 ¼ b2 ¼ 0:2 inside the cubes. Inspiration for this choice of geometry comes from M.C. Escher’s
Waterfall (see Fig. 2). Our cubes have a characteristic dimension of 0:2, and have center-to-center spacing of 0:5 in a
1� 1� 1 box. The simulations reported below (see Fig. 4) were run on a grid produced by three applications of recursive
tetrahedral refinement to the coarse grid shown in Fig. 3. The simulations were initiated with a stationary Gaussian pulse
expð�ððx� xcÞ2 þ ðy� ycÞ

2 þ ðz� zcÞ2Þ=0:032Þ in the plane of four of the polyhedra and offset slightly along the diagonal to
break the fourfold symmetry.

The grid for this simulation consisted of 31,126,528 tetrahedra in the surrounding media and roughly the same inside the
cubes. The time-step is Dt ¼ 0:00025. Results are plotted on a plane passing through the center of four of the polyhedra for
three times, t ¼ 0:25, t ¼ 0:5, and t ¼ 0:75. The location of the center of the initial pulse is in this plane and displaced slightly
toward the upper right, producing the observed diagonal asymmetry. The lines that can be seen in Fig. 4 illustrate the par-
titioning among the processors.

Remark. This simulation was done primarily to show that the present SBP–SAT technique can be utilized for large scale
simulations using computational tools from the production code CDP. A grid convergence study for this problem was not
performed, since it would be very costly to derive a reference solution. An assessment of the number of unknowns needed to
resolve the wave-propagation was not done.
5. Conclusions and future work

We have proven that narrow-stencil approximations of the second-order acoustic wave equation in discontinuous media
are time-stable, when combining narrow-diagonal SBP operators and the SAT penalty technique to impose the boundary and
interface conditions. The accuracy and stability of the present method have been verified by numerical simulations in 1-D
using high-order finite difference discretizations and in 3-D using the unstructured finite volume discretization utilized
by the production code CDP. A direct comparison with the projection method was done in 1-D, with the conclusion that
the newly constructed SAT method is very much favorable.

Future work will include the application of the present SBP–SAT technique to systems of second-order hyperbolic equa-
tions such as the elastic wave equations and Maxwell’s equations. To further increase the efficiency of the method we will
propose a hybrid discretization, by combining (using the SAT technique) the high-order accurate SBP discretizations and the
unstructured SBP discretization discussed in the present study.
Appendix I. Narrow-diagonal second-derivative SBP operators

Proof of Lemma 2.3. The dissipative part Mb of a narrow-diagonal second-derivative SBP operator can be factorized like
Mb ¼ STRS. Since Mb by construction is positive semi-definite, this also holds for R. The positive semi-definite matrix R is then
split into
R ¼ eR � h diagðb0a;0; . . . ; 0; bNaÞ:
By using the symbolic mathematics program MAPLE we can numerically derive the limiting value of a, such thateR ¼ R� h diagðb0a;0; . . . ; 0; bNaÞ is positive semi-definite. The value of a depends on the numerical scheme and b, but is
independent of the grid-size h, for a sufficiently resolved b. A properly chosen a means that eR is positive semi-definite, which
also holds for eMb ¼ STeRS. By construction
vTMbv ¼ ðSvÞTRðSvÞ ¼ h
a
b0
ðBSvÞ20 þ h

a
bN
ðBSvÞ2N þ vT eMbv;
which show that (7) holds. h
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We now present the specific forms of the narrow-diagonal SBP operators used in the analysis. We consider the second-,
fourth- and sixth-order accurate discretizations.
I.1. The second-order case

The norm is defined by
H ¼ h

1
2

1
. .

.

1 0
1
2

266666664

377777775:
The narrow-diagonal second-derivative SBP operator for variable coefficients are given by
D2 ¼ H�1ð�DTeB Dþ BSÞ;
where
D ¼ 1
h

�1 1
�1 1

. .
.

�1 1
�1 1

26666664

37777775 eB ¼ h
2

b0 þ b1

b1 þ b2

. .
.

bN�1 þ bN

0

266666664

377777775

and
B ¼

�b0

0
. .

.

0
bN

26666664

37777775 S ¼ 1
h

�1 1
1

. .
.

1
�1 1

26666664

37777775:
For the special case of constant b we obtain
DTeB D ¼ M ¼ 1
h

1 �1
�1 2 �1

. .
.

�1 2 �1
�1 1

26666664

37777775:
In [24] we use a more accurate approximation of the boundary derivative, given by
S ¼ 1
h

3
2 �2 1

2

1
. .

.

1
1
2 �2 3

2

266666664

377777775;
which leads to a ¼ 0:4 (instead of 1, see Table 1).
I.2. The fourth-order case

The discrete norm is given by: H ¼ h diag 17
48 ;

59
48 ;

43
48 ;

49
48 ;1; . . .

� 	
. The M and S operators (using 9 points) are given by
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M ¼ 1
h

9
8 � 59

48
1

12
1

48

� 59
48

59
24 � 59

48
1

12 � 59
48

55
24 � 59

48
1

12
1

48 0 � 59
48

59
24 � 4

3
1

12
1

12 � 4
3

5
2 � 4

3
1

12

. .
.

1
12 � 4

3
5
2 � 4

3
1

12
1

12 � 4
3

59
24 � 59

48 0 1
48

1
12 � 59

48
55
24 � 59

48
1

12

� 59
48

59
24 � 59

48
1

48
1

12 � 59
48

9
8

2666666666666666666666664

3777777777777777777777775

;

S ¼ 1
h

11
6 �3 3

2 � 1
3

1
. .

.

1
� 1

3
3
2 �3 11

6

266666664

377777775:
I.3. The sixth-order case

The discrete norm is given by: H ¼ h diag 13649
43200 ;

12013
8640 ;

2711
4320 ;

5359
4320 ;

7877
8640 ;

43801
43200 ;1; . . .

� 	
. The 5th-order accurate boundary deriva-

tive operator is given by
S ¼ 1
h

� 25
12 4 �3 4

3
1
4

1
. .

.

1
1
4 � 4

3 3 �4 25
12

266666664

377777775:
The left boundary closure of hM is given by
m1;1 ¼
15583
12960

m2;3 ¼ �
134603
51840

m3;6 ¼ �
30409
86400

m5;7 ¼
3

20

m1;2 ¼ �
253093
172800

m2;4 ¼
4141
2880

m4;4 ¼
37967
6480

m5;8 ¼ �
1

90

m1;3 ¼
52391

129600
m2;5 ¼ �

86551
103680

m4;5 ¼ �
53369
17280

m6;6 ¼
49
18

m1;4 ¼ �
68603

259200
m2;6 ¼

24641
129600

m4;6 ¼
54899

129600
m6;7 ¼ �

3
2

m1;5 ¼
2351

14400
m3;3 ¼

10991
2160

m4;7 ¼ �
1

90
m6;8 ¼

3
20

m1;6 ¼ �
4207

103680
m3;4 ¼ �

22583
5184

m5;5 ¼
2747
810

m6;9 ¼ �
1

90

m2;2 ¼
42353
12960

m3;5 ¼
46969
25920

m5;6 ¼ �
820271
518400
In the interior we have the symmetric scheme: �h ðM vÞj ¼ 1
90 vj�3 � 3

20 vj�2 þ 3
2 vj�1 � 49

18 vj þ 3
2 vjþ1 � 3

20 vjþ2 þ 1
90 vjþ3.
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